domingo, 14 de março de 2010

Prograssão Aritmética

1 - Introdução

Chama-se seqüência ou sucessão numérica, a qualquer conjunto ordenado de números reais ou complexos. Assim, por exemplo, o conjunto ordenado A = ( 3, 5, 7, 9, 11, ... , 35) é uma seqüência cujo primeiro termo é 3, o segundo termo é 5, o terceiro termo é 7 e assim sucessivamente.

Uma seqüência pode ser finita ou infinita. O exemplo dado acima é de uma seqüência finita. Já a seqüência P = (0, 2, 4, 6, 8, ... ) é infinita.

Uma seqüência numérica pode ser representada genericamente na forma:(a1, a2, a3, ... , ak, ... , an, ...) onde a1 é o primeiro termo, a2 é o segundo termo, ... , ak é o k-ésimo termo, ... , an é o n-ésimo termo. (Neste caso, k <0)

Por exemplo, na seqüência Y = ( 2, 6, 18, 54, 162, 486, ... ) podemos dizer que a3 = 18, a5 = 162, etc.

São de particular interesse, as seqüências cujos termos obedecem a uma lei de formação, ou seja é possível escrever uma relação matemática entre eles. Assim, na seqüência Y acima, podemos observar que cada termo a partir do segundo é igual ao anterior multiplicado por 3. A lei de formação ou seja a expressão matemática que relaciona entre si os termos da seqüência, é denominada termo geral.

Considere por exemplo a seqüência S cujo termo geral seja dado por an = 3n + 5, onde n é um número natural não nulo. Observe que atribuindo-se valores para n, obteremos o termo an (n - ésimo termo) correspondente.

Assim por exemplo, para n = 20, teremos an = 3.20 + 5 = 65, e portanto o vigésimo termo dessa seqüência (a20) é igual a 65. Prosseguindo com esse raciocínio, podemos escrever toda a seqüência S que seria: S = ( 8, 11, 14, 17, 20, ... ).

Dado o termo geral de uma seqüência, é sempre fácil determiná-la. Seja por exemplo a seqüência de termo geral an = n2 + 4n + 10, para n inteiro e positivo. Nestas condições, podemos concluir que a seqüência poderá ser escrita como: (15, 22, 31, 42, 55, 70, ... ).
Por exemplo: a6 = 70 porque a6 = 62 + 4.6 + 10 = 36 + 24 + 10 = 70.2 -
2- Conceito de Progressão Aritmética - PA

Chama-se Progressão Aritmética – PA – à toda seqüência numérica cujos termos a partir do segundo, são iguais ao anterior somado com um valor constante denominado razão.

Exemplos:
A = ( 1, 5, 9, 13, 17, 21, ... ) razão = 4 (PA crescente)
B = ( 3, 12, 21, 30, 39, 48, ... ) razão = 9 (PA crescente)
C = ( 5, 5, 5, 5, 5, 5, 5, ... ) razão = 0 (PA constante)
D = ( 100, 90, 80, 70, 60, 50, ... ) razão = -10 ( PA decrescente)

3 - Termo Geral de uma PA

Seja a PA genérica (a1, a2, a3, ... , an, ...) de razão r.
De acordo com a definição podemos escrever:
a2 = a1 + 1.r
a3 = a2 + r = (a1 + r) + r = a1 + 2r
a4 = a3 + r = (a1 + 2r) + r = a1 + 3r

Podemos inferir (deduzir) das igualdades acima que:
an = a1 + (n – 1) . r

A expressão an = a1 + (n – 1) . r é denominada termo geral da PA. Nesta fórmula, temos que an é o termo de ordem n (n-ésimo termo) , r é a razão e a1 é o primeiro termo da Progressão Aritmética – PA.

Exemplos:

Qual o milésimo número ímpar positivo?

Temos a PA: ( 1, 3, 5, 7, 9, ... ) onde o primeiro termo a1= 1, a razão r = 2 e queremos calcular o milésimo termo a1000.

Nestas condições, n = 1000 e poderemos escrever:

a1000 = a1 + (1000 - 1).2
= 1 + 999.2 = 1 + 1998
= 1999.

Portanto, 1999 é o milésimo número ímpar.

Qual o número de termos da PA: ( 100, 98, 96, ... , 22) ?

Temos a1 = 100, r = 98 -100 = - 2 e an = 22 e desejamos calcular n.
Substituindo na fórmula do termo geral, fica:

22 = 100 + (n - 1). (- 2) ;
logo, 22 - 100 = - 2n + 2 e,
22 - 100 - 2 = - 2n

de onde conclui-se que

- 80 = - 2n , de onde vem n = 40. Portanto, a PA possui 40 termos.

Através de um tratamento simples e conveniente da fórmula do termo geral de uma PA, podemos generaliza-la da seguinte forma:

Sendo aj o termo de ordem j (j-ésimo termo) da PA e ak o termo de ordem k ( k-ésimo termo) da PA, poderemos escrever a seguinte fórmula genérica:
aj = ak + (j - k).r

Exemplos:

Se numa PA o quinto termo é 30 e o vigésimo termo é 60, qual a razão?
Temos a5 = 30 e a20 = 60.

Pela fórmula anterior, poderemos escrever:
a20 = a5 + (20 - 5) . r

e substituindo fica:
60 = 30 + (20 - 5).r ;
60 - 30 = 15r ; logo, r = 2.

Numa PA de razão 5, o vigésimo termo vale 8. Qual o terceiro termo?
Temos r = 5, a20 = 8.

Logo, o termo procurado será: a3 = a20 + (3 – 20).5
a3 = 8 –17.5 = 8 – 85 = - 77.

3 - Propriedades das Progressões Aritméticas

Numa PA, cada termo (a partir do segundo) é a média aritmética dos termos vizinhos deste. Exemplo: PA : ( m, n, r ) ; portanto, n = (m + r) / 2

Assim, se lhe apresentarem um problema de PA do tipo: Três números estão em PA, ... , a forma mais inteligente de resolver o problema é considerar que a PA é do tipo: (x - r, x, x + r), onde r é a razão da PA.

Numa PA, a soma dos termos eqüidistantes dos extremos é constante.

Exemplo: PA : ( m, n, r, s, t);
portanto, m + t = n + s = r + r = 2r

Estas propriedades facilitam sobremaneira a solução de problemas.

4 - Soma dos n primeiros termos de uma PA

Seja a PA ( a1, a2, a3, ..., an-1, an). A soma dos n primeiros termos
Sn = a1 + a2 + a3 + ... + an-1 + an ,

pode ser deduzida facilmente, da aplicação da segunda propriedade acima.

Temos:
Sn = a1 + a2 + a3 + ... + an-1 + an

É claro que também poderemos escrever a igualdade acima como:
Sn = an + an-1 + ... + a3 + a2 + a1

Somando membro a membro estas duas igualdades, vem:

2. Sn = (a1 + an) + (a2 + an-1) + ... + (an + a1)

Logo, pela segunda propriedade acima, as n parcelas entre parênteses possuem o mesmo valor ( são iguais à soma dos termos extremos a1 + an ) , de onde concluímos inevitavelmente que:2.
Sn = (a1 + an).n , onde n é o número de termos da PA.

Daí então, vem finalmente que:
Sn = (a1 + an).n/2

Exemplo:

Calcule a soma dos 200 primeiros números ímpares positivos.

Temos a PA: ( 1, 3, 5, 7, 9, ... )
Precisamos conhecer o valor de a200 .

Mas, a200 = a1 + (200 - 1).r = 1 + 199.2 = 399
Logo, Sn = [(1 + 399). 200] / 2 = 40.000
Portanto, a soma dos duzentos primeiros números ímpares positivos é igual a 40000.

Exercícios resolvidos e propostos:

1 - Qual é o número mínimo de termos que se deve somar na P.A. :( 7/5 , 1 , 3/5 , ... ) , a partir do primeiro termo, para que a soma seja negativa?
a) 9*
b) 8
c) 7
d ) 6
e) 5

SOLUÇÃO: Temos: a1 = 7/5 e r = 1 – 7/5 = 5/5 – 7/5 = -2/5, ou seja: r = -2/5.
Poderemos escrever então, para o n-ésimo termo an:
an = a1 + (n – 1).r = 7/5 + (n – 1).(-2/5)
an = 7/5 – 2n/5 + 2/5
= (7/5 + 2/5) –2n/5
= 9/5 –2n/5
= (9 – 2n)/5

A soma dos n primeiros termos, pela fórmula vista anteriormente será então:
Sn = (a1 + an). (n/2)
= [(7/5) + (9 – 2n)/5].(n/2)
= [(16 – 2n)/5].(n/2)
Sn = (16n – 2n2) / 10

Ora, nós queremos que a soma Sn seja negativa; logo, vem:
(16n – 2n2) / 10 <0>

Como o denominador é positivo, para que a fração acima seja negativa, o numerador deve ser negativo. Logo, deveremos ter:

16n – 2n2 <0> 8.
Como n é um número inteiro positivo, deduzimos imediatamente que n = 9. Portanto, a alternativa correta é a letra A.

2 - As medidas dos lados de um triângulo são expressas por x + 1, 2x , x2 - 5 e estão em P.A. , nesta ordem. O perímetro do triângulo vale:
a) 8
b) 12
c) 15
d) 24*
e) 33


3 - UFBA - Um relógio que bate de hora em hora o número de vezes correspondente a cada hora, baterá , de zero às 12 horas x vezes. Calcule o dobro da terça parte de x.
Resp: 60

4 - UFBA - Numa progressão aritmética, o primeiro termo é 1 e a soma do n-ésimo termo com o número de termos é 2. Calcule a razão dessa progressão.
Resp: r = -1

5 - A soma dos múltiplos positivos de 8 formados por 3 algarismos é:
a) 64376
b) 12846
c) 21286
d) 112
e) 61376*